Влияние гидростатического давления на энергии колебательных мод SiV и GeV центров в алмазе

<u>Разгулов А.А.</u> 1 , Ляпин С.Г. 1 , Новиков А.П. 1 , Екимов Е.А. 1

aleksandr.razgulov@phystech.edu

За прошедшие десятилетия в научной периодике прочно обосновались исследования центров окраски в алмазе, что во многом обусловлено перспективами их практического применения. Тем не менее, некоторые фундаментальные свойства центров окраски всё ещё остаются малоизученными. В частности, одним из таких белых пятен в корпусе знаний о SiV и GeV центрах являются данные о влиянии гидростатического давления на структуру их фононных крыльев (ФК). Вместе с тем, эта информация может быть полезна как для улучшения существующих теоретических подходов к описанию колебательных мод бивакансионных центров, так и в свете разработки способов контроля и управления параметрами их фотолюминесценции (ФЛ). Основные результаты барических исследований ФК SiV GeV центров представлены в таблице. Здесь EQ обозначает энергию квазилокального колебательной моды (КЛКМ), ЕР1 ЕР2 - энергии нелокализованных колебаний (т.е. колебаний, естественных для алмазной решётки самой по себе), а - производная энергии соответствующего колебания по давлению, α/(Еі) - относительный барический коэффициент і-ой колебательной моды (иными словами - её "чувствительность" к давлению). Индексы exp и DFT обозначают значения, полученные в рамках эксперимента (настоящая работа) и в результате DFT расчётов (работа [1]). Анализ результатов, представленных в таблице, приводит к довольно интригующим выводам, в частности:

- 1. Относительный барический коэффициент α/EQ КЛКМ SiV практически вдвое превышает аналогичный коэффициент КЛКМ GeV, что кажется контринтуитивным результатом в виду изоморфности этих центров, одинаковой симметрии КЛКМ GeV и SiV, и того обстоятельства, что для энергий бесфононных линий картина является обратной;
- 2. Рассчитанные методом DFT значения относительных барических коэффициентов α/EQ КЛКМ для обоих центров практически совпадают между собой и существенно отличаются от значений, полученных экспериментально. В то же время, значения α/EQ, рассчитанные для КЛКМ, совпадают со значениями, полученными экспериментально для нелокализованных колебаний Рі.Кроме того, существенное отличие чувствительностей КЛКМ и колебательных мод, связанных с пиками Р1 и Р2 ФК GeV центра, может быть интерпретировано как ещё одно косвенное доказательство различий в их природе.

	(E _Q) _{exp} [meV]	(EQ)DFT [meV]	α/(E _Q) _{exp} [%/GPa]	α/(EQ)DFT [%/GPa]	α(P ₁)/E _{P1} [%/GPa]	α(P ₂)/E _{P2} [%/GPa]
SiV	65	64.04	1%	0.29%	-	-
GeV	44	39.47	0.53%	0.28%	0.28	0.29

Работа была поддержана грантом РНФ № 24-12-00037.

Ссылки

- 1. Е.А. Екимов, С.Г. Ляпин, А.А. Разгулов, М.В. Кондрин, ЖЭТФ (2019), 156, с 925
- 2. E. Londero, G. Thiering, L. Razinkovas, A. Gali, A. Alkauskas, Phys. Rev. B (2018), 035306

¹ Институт физики высоких давлений им. Верещагина РАН, Москва, Россия